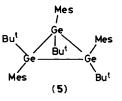
Reductive Coupling Reactions of Dihalogenogermanes with Magnesium and Magnesium Bromide: Simple Preparation of Cyclotrigermanes and Cyclotetragermanes

Wataru Ando* and Takeshi Tsumuraya

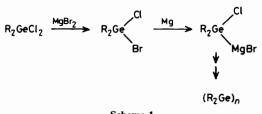

Department of Chemistry, The University of Tsukuba, Niihari-gun, Ibaraki 305, Japan

The reactions of various dihalogenogermanes with Mg and MgBr₂ in tetrahydrofuran produce the corresponding cyclotrigermanes and cyclotetragermanes; the ring size of the products depends on the steric bulk of substituents on germanium.

Recently there has been considerable interest in the chemistry of small-ring compounds, because of their high reactivity resulting from strain energy, and some stable three-membered cyclogermanes have been synthesized.¹⁻⁴ Masamune *et al.* prepared stable cyclotrigermanes by treatment of dichlorobis-(2,6-dimethylphenyl)germane or dichlorobis-(2,6-diethylphenyl)germane with lithium naphthalenide.⁴ We report here a simple synthesis of cyclotrigermanes and cyclotetragermanes by reductive coupling of various dihalogenogermanes with Mg and MgBr₂ in tetrahydrofuran (THF).

The reactions were carried out under dry argon. Typically, to a mixture of Mg (220 mmol), MgBr₂ $^{+}$ (60 mmol), and dry

THF in a small flask was added a solution of dichlorodimesitylgermane (57 mmol) [mesityl(Mes) = 2,4,6-trimethylphenyl] in THF by syringe, with stirring. The solution initially turned yellow, and then black after stirring for 2 h at room temperature. The mixture was hydrolysed with dilute hydrochloric acid, and extracted with ether. After evaporation, hexane was added to afford colourless crystals of



[†] Prepared *in situ* by the reaction of Mg and dibromoethane in THF; see ref. 5.

 Table 1. Reductive coupling reactions of dihalogenogermanes by Mg and MgBr₂.

$R_2GeX_2 + Mg + MgBr_2 \xrightarrow{THF} (R_2Ge)_n X = Cl \text{ or } Br$				
Run	Starting material ^a	Reaction conditions	Products	Yields (%)
1	Ph ₂ GeCl ₂	Room temp.	$(Ph_2Ge)_4(1)^{b}$	46
2	Mes ₂ GeCl ₂	Room temp.	$(Mes_2Ge)_3(2)$	54
3	Xy ₂ GeCl ₂	Room temp.	$(Xy_2Ge)_3(3)^c$	62
4	Ar ₂ GeCl ₂	Reflux	$(Ar_2Ge)_3 (4)^c$	32
5	Mes(But)GeCl ₂	Room temp.	$[Mes(Bu^t)Ge]_3(5)$	10
6	Pri2GeCl2	Reflux	$(Pr_{2}^{i}Ge)_{4}(6)^{d}$	9
7	(Me ₃ SiCH ₂) ₂ GeCl ₂	Room temp.	$[(Me_3SiCH_2)_2Ge]_4(7)^e$	15
8	Ar_2GeBr_2	Room temp.	$(Ar_2Ge)_3$	15

^a Mes = 2,4,6-trimethylphenyl, Xy = 2,6-dimethylphenyl, Ar = 2,6-diethylphenyl. ^b Ref. 6. ^c Ref. 4. ^d M.p. 175–178 °C; ¹H n.m.r. (CDCl₃) δ 1.32 (d, J 7 Hz, 48H) and 1.83 (sept, J 7 Hz, 8H); ¹³C n.m.r. (CDCl₃) δ 19.77 (d) and 23.35 (q); *m/z* 640 (*M*⁺). ^e M.p. 216–226 °C; ¹H n.m.r. (CDCl₃) δ 0.10 (s, 72H) and 0.33 (s, 16H); ¹³C n.m.r. (C₆D₆) δ 2.83 (q) and 5.00 (t); *m/z* 992 (*M*⁺).

Scheme 1

hexamesitylcyclotrigermane (2) in 54% yield [m.p. 270-276 °C; ¹H n.m.r. (CDCl₃) δ 2.02(s,36H), 2.17(s,18H), and 6.73(s,12H); ¹³C n.m.r.(CDCl₃) & 20.78(q), 24.95(q), 128.11(d), 137.09(s), 142.43(s), and 142.96(s); m/z 624(M+ Mes₂Ge)]. Various other cyclotrigermanes and cyclotetragermanes were synthesized similarly (Table 1). Reactions with dihalogenogermanes bearing bulky substituents afforded cyclotrigermanes (runs 2-5, and 8), the less hindered dichlorogermanes gave cyclotetragermanes (runs 1, 6 and 7). Only one of the two possible isomers was isolated in the reductive coupling of dichloro-(t-butyl)mesitylgermane (run 5), and was tentatively identified as cis.trans (5) [m.p. 201-203 °C; ¹H n.m.r. (CDCl₃) δ 0.83 (s,9H), 1.26(s,18H), 2.23(s,6H), 2.27(s,3H), 2.47(s,6H), 2.71(s,6H), 2.76(s,6H), 6.77(s,2H), 6.83(s,2H), and 6.89(s,2H); ¹³C n.m.r. (CDCl₃)δ 20.86(q), 27.74(q), 27.90(q), 30.39(q), 32.78(q), 33.64(s),33.91(s), 127.80(d), 127.91(d), 128.12(d), 137.01(s), 137.17(s), 138.14(s), 138.85(s), 143.40(s), 143.51(s), and 143.72(s); m/z 500(M^+ –MesBu^tGe)].

For comparison, the reaction of dibromobis-(2,6-diethylphenyl)germane with Mg and MgBr₂ in THF was investigated. The reaction proceeded under milder conditions than that of the dichlorogermane, although the yield was low (run 8). However, the reaction of dichlorodimesitylsilane with Mg and MgBr₂ did not take place even under vigorous conditions.

The reaction probably proceeds through initial halogen exchange by $MgBr_2$ to produce bromochlorogermanes, which react reductively, giving cyclopolygermanes (Scheme 1).‡ A similar mechanism has been postulated for the reaction of dichlorodiphenylsilane with Mg and MgBr₂.⁵

Received, 12th June 1987; Com. 816

References

- 1 M. Baudler, Pure Appl. Chem., 1980, 52, 755.
- 2 A. Krebs and J. Berndt, Tetrahedron Lett., 1983, 24, 4083.
- 3 W. Ando and T. Tsumuraya, Tetrahedron Lett., 1986, 27, 3251.
- 4 S. Masamune, Y. Hanzawa, and D. J. Williams, J. Am. Chem. Soc., 1982, 104, 6136; J. T. Snow, S. Murakami, S. Masamune, and D. J. Williams, *Tetrahedron Lett.*, 1984, 25, 4191.
- 5 C. L. Smith and R. Gooden, J. Organomet. Chem., 1974, 81, 33.
- 6 W. P. Neumann and K. Kuhlein, Liebigs Ann. Chem., 1965, 683, 1.

[‡] During the reaction of dichlorodi-isopropylgermane with Mg and MgBr₂, bromochlorodi-isopropylgermane and dibromodi-isopropylgermane were detected by g.l.c.-mass spectrometry.